
Aircraft Optimal Design

Aerospace Engineering

Luís Martins Pacheco

Number 96425

João Pedro Gaspar

Number 96930

Report #3

04/06/2023

Contents

1 Introduction 1

2 Constrained Optimization using OpenMDAO 1

3 Analysis Models in OpenAeroStruct 4

4 Aerodynamic Optimization using OpenAeroStruct 7

5 Conclusions 13

References 14

ii

1 Introduction

The primary objective of this study is to employ the software tools OpenMDAO and OpenAeroStruct for

optimization purposes. Initially, OpenMDAO was utilized to minimize the Rosenbrock Function, a well-

known test function commonly employed in optimization tasks. Subsequently, an examination of the

model´s N2 diagram was conducted. The minimization process was explored both in an unconstrained

manner and with the inclusion of a constraint, employing both finite difference and analytic methods for

the determination of the gradients.

Furthermore, an extensive investigation was undertaken to analyze the structural analysis model

utilized in OpenAeroStruct. To conclude the study, an aerodynamic optimization of an isolated aircraft

wing was performed. The design variables considered for this optimization were a combination of the

angle of attack, twist, and chord. An additional constraint pertaining to aerodynamics was incorporated

into OpenAeroStruct. The aforementioned optimizations were then repeated, taking into account the

new constraint, and the effects of this constraint on the optimal solution were thoroughly analyzed.

2 Constrained Optimization using OpenMDAO

Considering the Rosenbrock function defined as:

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2. (1)

The partial derivatives of the Rosenbrock function, with respect to x1 and x2 were analytically deter-

mined to be:

∂f

∂x1
= 400x3

1 − 400x2x1 + 2x1 − 2 (2)

∂f

∂x2
= 200(x2 − x2

1) (3)

A model for the Rosenbrock function was defined in OpenMDAO. OpenMDAO models can exhibit

complex hierarchies consisting of interconnected groups and components, featuring numerous con-

nections between them. Visualizing the structure of these models is often advantageous in gaining a

comprehensive understanding of their organization. To address this need, OpenMDAO provides a model

visualization tool known as the N2 diagram. The N2 diagram represents a modified version of a design-

structure matrix, where the model hierarchy is presented on the left-hand side. Along the diagonal of the

diagram, each input and output of the components is depicted. The off-diagonal blocks indicate the data

connections between components. Feed-forward connections are illustrated in the upper triangle, while

feed-back connections, which introduce cyclic dependencies, will be shown in the lower triangle. Addi-

tionally, by hovering over any block on the diagonal, the associated incoming and outgoing connections

can be visually identified through the use of highlighted arrows. For the simple case of the Rosenbrock

1

function the N2 diagram of Figure 1 was obtained.

Figure 1: N2 diagram for the Rosenbrock function

The Rosenbrock function N2 diagram is relatively simple. To calculate the value of the Rosenbock

function, the values of x and y are required. The optimizer provides the component Rosen with this

inputs. There are no feed-back connections, nor coupling between x and y. The inputs will be used in

fxy, representing Equation 1, which will output a value of the function to be optimized.

The unconstrained minimization problem of the Rosenbrock function was solved numerically with

OpenMDAO. For the initial guess, point x = (−1.2, 1.0) was used and the partial derivatives were esti-

mated using the forward finite-difference method that exists within OpenMDAO [1].

The ScipyOptimizeDriver for optimization was used. The optimizer used was the Sequential Least

SQuares Programming (SLSQP), which is the default. All other options for the ScipyOptimizeDriver

were also used with their default values. Some of the most important are maxiter, the maximum number

of iterations before termination, which is set to 200 and tol, which is the tolerance for termination, which

was set 10−6 [2].

The optimization was completed successfully, with Exit mode 0. The optimized solution was f(x) =

6.50393674 × 10−8 and was determined to be at point x = (0.99976139, 0.99951384). To complete this

optimization 34 iterations and gradient evaluations were required along with 47 function evaluations. The

history of the uncontrained optimization is depicted in Figure 2.

The constrain g(x) = x1+x2 ≤ 1 was added to the minimization problem of the Rosenbrock function.

For the initial guesses of x = (1.2, 1.0) and xopt = (0.99976139, 0.99951384) the optimization results of

Table 1 were obtained.

Table 1: Optimization results and computational cost of the minimization of the Rosenbrock function
subject to the constrain g(x) = x1 + x2 ≤ 1. Finite Differences were used in gradient calculations.

Initial Guess Func Val X val Y val Iter Func Eval Grad Eval Exit Mode
(-1.2, 1.0) 0.14560738 0.61882245 0.38117755 22 29 22 0

X opt 0.14560748 0.61882595 0.38117405 12 20 12 0

As can be seen from Table 1, for the constrained optimization problem when the value of the optimum

solution obtained from the unconstrained minimization problem is used for the initial guess, the optimal

2

Figure 2: History of the function values and inputs x and y for the unconstrained minimization

Table 2: Optimization results and computational cost of the minimization of the Rosenbrock function
subject to the constrain g(x) = x1 + x2 ≤ 1. Analytical derivatives were used in gradient calculations.

Initial Guess Func Val X val Y val Iter Func Eval Grad Eval Exit Mode
(-1.2, 1.0) 0.14560715 0.61881163 0.38118837 20 28 20 0

X opt 0.14560702 0.61879605 0.38120395 13 21 13 0

solution is reached with less computational cost. This may be explained by the fact that the optimal

solution for the constrained optimization is closer to the optimal solution of the unconstrained problem

than to (-1.2, 1). Despite this detail for both initial guesses the optimization was successful, and reached

very similar results.

Using profiling capability it was determined that for the initial guess (-1.2, 1), the Rosenbrock function

was called was 73 times. Out of those, 44 were for use in the gradient calculation. This is in accordance

to the fact that the number of gradient evaluations is 22. As there are two input and one output variables,

when determining the partial derivatives using forward finite differences, a calculation of the value of

the Rosenbrock function for a certain perturbation set size h, for each input is calculated, meaning two

calculations of the Rosenbrock function per gradient evaluation. The number of time the constrained

was verified was 29, the same as the number of time the the Rosenbrock function was evaluated without

gradient purposes. The CPU time required was 0.421875 seconds approximately.

Taking xopt as the initial guess, and performing the same procedure it was determined that 44 function

calls were performed, 24 of those function calls being related to gradient evaluations for the reasons

explained previously. The number of constrain verifications were 20 times. The CPU time required was

0.390625 seconds approximately.

Once again, it can be inferred that the computational power needed for the minimization process

was lower for the initial guess xopt. The functions used this particular case were simple, and did not

require much computational time, but it can be seen that more than half of the function calls were due to

gradient evaluations. It therefore can be expected that an efficient way to calculate the gradients will be

crucial to the optimization success.

The constrained optimization was performed again but this time using the analytic partial derivatives

from Equations 2 and 3. The results obtained are present in Table 2.

3

(a) (b)

Figure 3: History of the function values and inputs x and y for the constrained minimization using finite
differences. On the left with initial guess (-1.2, 1.0) and on the right Xopt.

Upon comparing Table 1 and 2, it becomes evident that the computational cost associated with em-

ploying Finite Differences or analytically defined partial derivatives is quite similar in the specific case

under study. This similarity primarily stems from the fact that both the Rosenbrock function and the

analytically defined derivatives do not require significant computational resources. It is important to ac-

knowledge that opting for Finite Differences instead of analytically defined partial derivatives introduces

a slight error into the optimization process.

However, if the function under evaluation were considerably more complex in its analysis, it is ex-

pected that utilizing analytically defined partial derivatives would prove to be more efficient, as there

would be no need to compute the function itself in order to determine the derivatives, as it is done in

finite differences. Additionally, the selection of an appropriate step size is a crucial consideration when

employing Finite Differences, as an ill-suited step size may yield sub-optimal gradient results.

Furthermore, when derivatives are obtained via the chain rule the choice of differentiation mode,

whether forward or backward, can significantly impact the efficiency of gradient calculation methods.

For instance, when utilizing the backward mode with a scenario involving a limited number of output

variables but multiple input variables, the utilization of analytically defined derivatives would be notably

more efficient than using Finite Differences.

3 Analysis Models in OpenAeroStruct

The numerical solution of the structural model in OpenAeroStruct initiates with the establishment of a

spatial beam element. This element represents a straight bar with a cross section of arbitrary shape,

capable of supporting axial and transverse forces, as well as moments. Moreover, the spatial beam

element can deform not only along its axial direction but also in directions perpendicular to its axis.

The spatial beam element possesses a total of six degrees of freedom (DOFs) at each of its nodes,

comprising three translational displacements in the x, y, and z directions, along with three rotational

4

(a) (b)

Figure 4: History of the function values and inputs x and y for the constrained minimization with analytical
partial derivatives. On the left with initial guess (-1.2, 1.0) and on the right Xopt.

DOFs around the x, y, and z axes, resulting in a cumulative sum of 12 DOFs.

The spatial beam element is obtained through the superimposition of a plane beam element under

bending condition, a torsional bar, and a truss element. Subsequently in OpenAeroStruct, the structural

model undergoes discretization, and a grid is generated. The structure is divided into multiple elements

in the spanwise direction, and the discretization of the spar follows the same spanwise mesh discretiza-

tion as in aerodynamics. The maximum radius of the spar is determined by the thickness-to-chord

ratio. The initial mesh determines the locations of the finite element method (FEM) nodes. All of these

computations are performed in Class ComputeNodes.

The geometric properties of a spatial beam element, that will be required for the forthcoming calcu-

lations such as the moments of inertia of the y and z axis, Iy and Iz respectively, the polar moment of

inertia J and the cross-sectional area are calculated in OpenAeroStruct´s class SectionPropertiesTube

for each FEM element.

If the equilibrium of the spatial beam element is expressed by Equation 4 and the displacement vector

for the spatial beam element is represented as ue = [u1v1w1αx1αy1αz1u2v2w2αx1
αx2

αx1
]T

[ke]{ue} = {fe} (4)

then the local spatial beam element stiffness matrix is denoted as Ke. This matrix is a combination

of stiffness matrices from the truss, plane beam, and torsional bar elements. The local stiffness matrix is

computed in local stiff.py and all the matrices for each node are stored in an array of size (ny-1,12,12).

The formulation of the matrix [Ke] is carried out in the local reference frame, where the x-axis aligns with

the longitudinal axis of the beam element.

To convert the local degrees of freedom into global degrees of freedom within a global reference

frame, a series of three rotations are performed. This is done in Class LocalStiffTransformed using a

transformation matrix obtained in class Transform. Subsequently, the local node entries are placed into

the corresponding global node entries in the global matrix K.

5

To solve the structural problem the exterior forces applied to the spatial beam need to be calculated.

The loads on the structure due to the thrust of engines are computed in class ComputeThrustLoads.

The loads on the structure due to point masses, due to the weight of the wing structure and due to

the distributed fuel within the wing are calculated in classes ComputePointMassLoads, StructureWeight-

Loads, and FuelLoads, respectivelly. Class TotalLoads adds all the loads from aerodynamics, structural

weight and fuel weight. Class CreateRHS computes the vector on the right-hand-side of Equation 5 for

each node. The RHS is based on the loads, and for the aerostructural case, these are recomputed at

each design point based on the aerodynamic loads.

With the global stiffness matrix [K] and load vector F in hand, the linear equation

[k]{u} = {f} (5)

is solved to obtain the displacement vector u which encompasses the nodal translations and rota-

tions. This is done in class FEM. Incorporating these nodal displacements into the original grid nodes

allows the determination of the deformed shape of the structure. This new shape is used by the aerody-

namic solver to compute the new aerodynamic loads.

From the translation and rotation displacements, the normal and shear stresses can be computed. By

considering the normal and shear stresses, the Von Mises stresses at each node are calculated in Class

VonMisesTube). Applying the Von Misses criteria it can be determined if the material will suffer plastic

deformation or even fracture. If the Von Misses stresses are superior to the yield stresses the material

will yield and this condition will be given by Class FailureExact. Additionally, the total strain energy of

the spar can be determined based on the integration of the load vectors with the displacement, which is

done in Class Energy.

In Figure 5 a detailed flowchart of the numerical implementation of the structural analysis in Ope-

nAeroStruct is presented with the most important classes and routines and their inputs and outputs.

6

Figure 5: Flowchart of the Structures model in OpenAeroStruct

4 Aerodynamic Optimization using OpenAeroStruct

In the optimization problem of the aerodynamic design for minimizing drag on an isolated aircraft wing

assuming inviscid drag only, an optimum elliptical lift distribution across the span of the wing is sought.

This distribution was found to theoretically minimize induced drag (drag due to lift) for a given amount

of lift. The idea behind the elliptical lift distribution is to minimize the creation of vortices at the wingtips,

which are responsible for induced drag. These vortices create a downwash and by distributing the lift in

an elliptical manner, the downwash is more evenly distributed along the span, reducing the strength and

extent of the wingtip vortices. In an elliptical lift distribution the Oswald’s efficiency factor is 1.

Fully elliptical wings are uncommon in practical applications, nevertheless, for a variety of reasons.

The intricate manufacturing process and related expenses needed in obtaining and maintaining the per-

fect elliptical shape represent a significant challenge. With an elliptical wing shape it is very technically

challenging to construct the leading and trailing edges as well as the spar. Also introducing Flaps,

Slats, Aileron and other control surfaces to the wing is much more manufacturing challenging than in a

7

Figure 6: Number of mesh elements vs. Error & CPU time

conventional wing.

Another issue is how the elliptical wing behaves at the wingtips. The local Reynolds number re-

duces as the chord gets closer to the wingtips, making the wing more prone to stalling. The aircraft’s

controllability and maneuverability may suffer as a result, especially under difficult flight circumstances.

Consequently, a mix of twist and chord distribution is the preferred method in wing design. Without

relying entirely on an elliptical wing shape, it is possible to achieve the appropriate lift distribution by

carefully regulating the variations in chord and angle of attack through twist.

Although the elliptical wing is the ideal design in theory, it is rarely used in practice due to manufac-

turing difficulties and expense, as well as the risk of stalling at the wingtips. To achieve the necessary lift

distribution and maximize aerodynamic performance, current wing design methodologies concentrate

on combining twist and chord distribution.

Mesh size study

Before performing the optimization of the wing shape, involving changes to the angle of attack (α),

chord distribution (c(y)), and twist distribution (γ(y)), it is crucial to establish an appropriate mesh size

to ensures not only efficient computational performance but also that the optimization results are inde-

pendent of the mesh used. For this purpose, a relationship between the x and y directions has been

defined as follows:

Nx =
Ny

AR
(6)

Here, AR represents the aspect ratio, while Nx and Ny denote the number of elements in each di-

rection. This equation ensures a mesh with elements of relatively equal length and width. Subsequently,

the drag coefficient of the wing was computed without undergoing the optimization process for meshes

of multiple sizes, and the associated error and CPU time were evaluated to determine the impact of the

mesh size. The results are presented in Figure 6.

As shown in Figure 6, it is evident that the error decreases as the number of mesh elements in-

creases. However, it should be noted that the CPU time also increases as the mesh gets more refined.

8

Figure 7: Mesh

After approximately 40 elements in the span direction, the error reduction becomes minimal, less that

10−7, while the CPU time increases significantly. Therefore, it can be inferred that a mesh with around

40 elements in the span direction is sufficient for accurate computation of the drag coefficient (CD) while

still being computationally efficient. The problems were set with a mesh size of 41 by 7 elements. The

resulting mesh is presented in Figure 7. The influence of the number of control points in the chord and

twist was also studied. It was determined that when varying this number the results were not significantly

affected, with errors smaller than the 10−7, and so 3 control points were used for both twist and chord.

Tabular results

The analysis of different scenarios shows consistent constraints (S, CL and F values) and increasing

complexity with more design variables included. Comparing the scenarios in terms of increasing number

of design variables, it can be concluded that the computational effort increases as the number of design

variables increases. In terms of CD minimization, its possible to say that all scenarios achieve very

similar value.

Constrains Optimization Process Optimal Solution

S CL Iter. F. Eval. α CD CL
(i) - α - 0.2253 3 3 0.47 0.00704915 0.2253
(ii) - α and γ(y) - 0.2253 8 8 0.53 0.00704692 0.2253
(iii) - α and c(c) 16.2 0.2253 18 21 0.49 0.00706894 0.2253
(iv) - α and γ(y) and c(y) 16.2 0.2253 24 28 0.55 0.00706888 0.2253

Table 3: Optimal solution for the aerodynamic optimization using varied design variables.

Optimization of α

The only design variable in the beginning of the optimization process is the angle of attack. In light of

the fact that the lift coefficient depends on the angle of attack, it is important to note that by limiting the lift

coefficient, we may choose from a smaller number of possibilities in terms of angle of attack. Instead of

changing the geometry of the wing, this optimization changes the angle the wing makes with the airflow.

The achieved lift distribution and the desired elliptical distribution are depicted in the accompanying

image, Figure 8. It becomes clear that it was impossible to achieve the elliptical lift distribution by only

optimizing the angle of attack.

9

aero_point_0.wing_perf.CD: [0.00705041]

Iteration: 3

1 0 1

0.04

0.02

0.00

0.02

0.04

twist

1 0 1
0.00

0.05

0.10

lift

elliptical

Figure 8: α optimal result

Optimization of α and γ(y)

The incidence angle of the wing can change along its span by adding torsion as a design variable

using a three-point control array. At the root of the wing, torsion is deliberately set to zero. In Figure 9

the optimal torsion across the span is depicted. This value is negative and decreases as we move to-

wards the wing tips. The value of the optimal α is 0.53 degrees . Contrary to the preceding situation, it’s

interesting to note that the lift distribution curve closely resembles the elliptical distribution curve. Con-

sidering that the lift distribution almost completely encloses the elliptical distribution curve, this alignment

indicates that the wing’s drag coefficient (CD) is minimized.

aero_point_0.wing_perf.CD: [0.00707078]

Iteration: 8

1 0 1

0.3

0.2

0.1

0.0

twist

1 0 1
0.00

0.05

0.10

0.15

lift

elliptical

Figure 9: α and γ(y) optimal result

Optimization of α and c(y)

In the optimization using the design variables α and c(y), and keeping in mind what was predicted

theoretically, the wing’s shape altered from a rectangle to an ellipse. The twist value of the wing stayed

constant at 0, and α equal to 0.49 degrees throughout the wing. The chord varies as depicted in Figure

10 with the span in order to obtain an elliptical distribution.

Optimization of α, γ(y) and c(y)

In this scenario, all the design variables were used. The wing shape gradually transformed into an

elliptical form. The twist of the wing predominantly showed a positive value, increasing from the midpoint

towards the tip. However, in the half portion of the span closer to the fuselage, the twist had a negative

value, and it was zero at the root, as specified. The value of was α 0.55 degrees and the chord varied in

span, in order to obtain an almost elliptical distribution of lift.

10

aero_point_0.wing_perf.CD: [0.00707062]

Iteration: 13

1 0 1

0.04

0.02

0.00

0.02

0.04

twist

1 0 1
0.00

0.05

0.10

0.15

lift

elliptical

Figure 10: α and c(y) optimal result

aero_point_0.wing_perf.CD: [0.00707055]

Iteration: 22

1 0 1

0.2

0.0

0.2

twist

1 0 1
0.00

0.05

0.10

0.15

lift

elliptical

Figure 11: α, γ(y) and c(y) optimal result

New constrain to the optimization problem

To incorporate a new constraint into the optimization problem, one variation of the Berguet Equation,

which relates aircraft performance and aerodynamics was taken into consideration:

Range =
CL

CD

V

SFC
ln

(
Wf

Wi

)
(7)

To introduce a constraint factor ln
(

Wf
Wi

)
was denote as F . By limiting F to a lower bound, a new

constraint in the optimization was added, and the range can be maximized by focusing on optimizing the

wing shape to minimize the drag coefficient.

To properly imlement this, a new breguet range.py script to implement the function was created and

a new subsytem was added. Finally, all connections for variables were made.

Tabular results of optimization with the new constrain

Table 4 presents the results of the otimizations problems with the constrain in the previous section.

This table has similar values to the previous one, with the addition of an extra column representing

factor F. Factor F acts as a constraint, set to a lower bound of 0.8, for all the combinations of designing

variables.

11

Constrains Optimization Process Optimal Solution

S CL F Iter. F. Eval. α CD CL
(i) - α - 0.2253 0.8 3 3 0.47 0.00704915 0.2253
(ii) - α and γ(y) - 0.2253 0.8 8 8 0.53 0.00704692 0.2253
(iii) - α and c(c) 16.2 0.2253 0.8 18 21 0.49 0.00706894 0.2253
(iv) - α and γ(y) and c(y) 16.2 0.2253 0.8 24 28 0.55 0.00706888 0.2253

Table 4: Optimal solution for the aerodynamic optimization using varied design variables and an extra
constrain

From the results, we can say that the aerodynamic optimal solution is not greatly affected by the

constrain but the shape of the wing, meaning the design variables, can change as it will be seen later.

Optimization of α with the new constrain

With the new constrain, in the design aspect, the wing shape remains constant along the span when

considering only the angle of attack as a design variable, as depicted in Figure 12. This ensures that

the aerodynamic performance, as mentioned earlier, remains consistent throughout.

aero_point_0.wing_perf.CD: [0.00704915]

Iteration: 3

1 0 1

0.04

0.02

0.00

0.02

0.04

twist

1 0 1
0.00

0.05

0.10

lift

elliptical

Figure 12: α optimal result with the new constrain

Similar conclusions to the ones in cases without the new constrain to can be drawn to the cases with

the new constrain when the angle of attack and twist or the angle of attack and chord are the design

variables. Including the constraint will not affect the aerodynamic coefficients nor the wing shape.

Optimization of α and γ(y) with the new constrain

The wing shape resultant from the optimization considering the angle of the attack and the twist can

be seen in Figure 13.

aero_point_0.wing_perf.CD: [0.00704692]

Iteration: 8

1 0 1

0

1

2

3

twist

1 0 1

0.00

0.05

0.10

lift

elliptical

Figure 13: α and γ(y) optimal result with the new constrain

12

Optimization of α and c(y) with the new constrain

The wing shape resultant from the optimization considering the angle of the attack and the chord can

be seen in Figure 14.

aero_point_0.wing_perf.CD: [0.00706894]

Iteration: 21

1 0 1

0.04

0.02

0.00

0.02

0.04

twist

1 0 1
0.00

0.05

0.10

0.15

lift

elliptical

Figure 14: α and c(y) optimal result with the new constrain

Optimization of α, γ(y) and c(y) with the new constrain

To conclude the analysis considering all possible design variables, a significantly different wing shape

was achieved, as shown in Figure 15, when incorporating the new constraint. It is important to empha-

size the same aerodynamic performance as in the previous analysis was achived.

It is possible to observe a change in the twist distribution. The twist is zero near the fuselage and

decreases as we move closer to the middle of the wing and then proceeds to increase towards the

wingtips. Closer to the center of the fuselage a greater change in the value of twist is observed. This

change is accompanied by a decrease in the chord. This is done to achieve a near perfect elliptic lift

distribution on the wing. Near the fuselage, the chord is much smaller compared to the previous case

without the constraint.

aero_point_0.wing_perf.CD: [0.00706888]

Iteration: 28

1 0 1

0.4

0.2

0.0

0.2

0.4

twist

1 0 1
0.00

0.05

0.10

0.15

lift

elliptical

Figure 15: α, γ(y) and c(y) optimal result with the new constrain

5 Conclusions

From analysing the optimization of the Rosenbrock function in OpenMDAO it was concluded that gra-

dient computations, when using finite differences, can account for a great deal of function calls. If the

function to be called is a very expensive function to compute the cost of calculating said gradients can

13

be prohibitive. So whenever advantageous analytical partial derivatives should be used to minimize the

optimization computational power required.

In the Aerodynamic Optimization using OpenAeroStruct, primarily, our aim was to have a elliptical

circulation distribution, as that is the theoretical optimal solution. In order to ascertain the most optimal

aerodynamical approach, we undertook a study on the impact of mesh size, comparing the magnitude

of errors incurred and the corresponding computational processing time as we change the mesh ele-

ments number. In terms of design variables, our intention was to discern the far-reaching consequences

brought about by their manipulation. Moreover, we introduced a novel constraint, probing its influence

upon the optimal solution. Furthermore the influence of this newfound constraint, was analyzing in the

aerodynamic optimization with all the proposed design variables. The results of including the new con-

strain were the expected ones. Only in the case of the Optimization with design variables α, γ(y) and

c(y) with the new constrain a new wing shape was obtain, and in all design variables combination cases

the the same aerodynamic performance was achieved when compared to the case without the new

constrain.

The partial derivatives of the new constrain were analytically calculated and it was determined that

using the Finite Differences method existing within OpenMDAO provided very small errors when com-

pared to using the analytical derivatives.

Something interesting to conclude the work is to shown the wing in figure 16. Although it was possible

to reach an optimal solution for a value of F greater than 0.8, the wing does not have a structure that

can be built due to structural mechanical constraints.

Figure 16: Impact of setting F = 0.95

References

[1] T. O. D. Team. Approximating partial derivatives- openmdao. https://openmdao.org/newdocs/

versions/latest/features/core_features/working_with_derivatives/approximating_

partial_derivatives.html?highlight=approximations, 2022.

[2] T. O. D. Team. Scipyoptimizedriver- openmdao. https://openmdao.org/newdocs/versions/

latest/features/building_blocks/drivers/scipy_optimize_driver.html, 2022.

14

https://openmdao.org/newdocs/versions/latest/features/core_features/working_with_derivatives/approximating_partial_derivatives.html?highlight=approximations
https://openmdao.org/newdocs/versions/latest/features/core_features/working_with_derivatives/approximating_partial_derivatives.html?highlight=approximations
https://openmdao.org/newdocs/versions/latest/features/core_features/working_with_derivatives/approximating_partial_derivatives.html?highlight=approximations
https://openmdao.org/newdocs/versions/latest/features/building_blocks/drivers/scipy_optimize_driver.html
https://openmdao.org/newdocs/versions/latest/features/building_blocks/drivers/scipy_optimize_driver.html

	1 Introduction
	2 Constrained Optimization using OpenMDAO
	3 Analysis Models in OpenAeroStruct
	4 Aerodynamic Optimization using OpenAeroStruct
	5 Conclusions
	References

