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1 Introduction

In the realm of fluid dynamics, Computational Fluid Dynamics (CFD) has emerged as a powerful tool for simulating
and analyzing complex fluid flow phenomena. This project delves into two critical aspects of CFD – the simulation of a
convergent-divergent nozzle and a shock tube, each presenting unique challenges and insights into fluid behaviour.

The first segment of this study focuses on the simulation of a convergent-divergent nozzle, a fundamental component in
aerospace engineering and propulsion systems. The objective is to employ CFD techniques to model the flow through an
axisymmetric nozzle and subsequently compare the results with theoretical expectations. For this, both inviscid and viscous
flow simulations were conducted to explore the impact of viscosity on the nozzle’s performance.

The second phase of our project involves the simulation of a shock tube, a crucial device in fluid dynamics experiments
and the study of compressible flows. Here, the primary goal is to utilize CFD methodologies to reproduce the shock wave and
general flow behaviour within the tube and subsequently compare the simulated outcomes with theoretical predictions.

2 Convergent-Divergent Nozzle

The first segment of this comprehensive study focuses on the simulation of convergent-divergent nozzles using CFD.
Convergent-divergent nozzles play a pivotal role in aerospace engineering and propulsion systems, influencing the efficiency
and performance of various applications. In this phase, the goal is to apply viscous and inviscid simulations with STAR
CCM+ and compare the results with 1D isentropic/plane shock theory in two distinct scenerios: complete isentropic flow
through the noozle and a case where a shock is present inside it. An overview of the mesh and numerical parameters utilize
in the simulations are also presented, as well as other flow phenomena that could be observed with this simulation setups and
that the group decided it was worth mentioning.

Figure 1: Nozzle Geometry

2.1 Domain and Boundary conditions

In order to correctly solve this problem, special care had to be taken with the geometry of the domain, since it plays a
important role on the results. The group decided to utilise the same general geometry presented in the problem statement with
only a radial section of the nozzle being modelled. The model needed to be the same for both inviscid and viscous simulations
so to fairly compare the results in each. This lead to constraints in its geometry, specially due to the viscous simulations,
where flow separation is a problem that should be addressed. This is not a problem for the full isentropic case because the
flow constantly encounters favourable pressure gradients. This is not true when there is a shock wave.

If a shock wave is present at the diverging part of the nozzle, the flow turns to subsonic at a point where the nozzle is
increasing its cross sectional area. This causes the flow to decelerate, because it is subjected to a highly adverse pressure
gradient, in contrast to the supersonic flow that reduces pressure as cross sectional area increases. The phenomena indicates
that the longer the nozzle, the lower needs to be the gradient of cross-sectional area of the nozzle, resulting in the mitigation of
this phenomena. While this is mainly used in supersonic wind tunnels, this brings practical problems in real applications where
weight limitations are an important design factor, namely, propulsion systems. So, for this work an intermediate approach
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was selected, where the nozzle size was chosen to limit separation but without excessively extending the diverging section. In
addition to the nozzle, a atmospheric chamber is added at its exit to allow full flow development after leaving the nozzle.

Regarding boundary conditions, a total pressure was defined in the inlet, as well as an initial total temperature. While the
total temperature remained constant through all 4 simulations, the total pressure needed to be changed so that the shocks could
be created and moved in the domain. For the selection of this value, results from quasi 1D flows needed to be computed. A
code was created to perform the necessary calculations and the values required for the isentropic case and for the shock in a
specific location were calculated. The initial total pressure was then used in the STAR CCM+ calculations. For the outlet, a
pressure outlet at atmospheric condition was chosen to allow full expansion of the flow after the nozzle exit. An axisymmetric
condition was set in the axis of rotation and the other boundaries were set as no-slip walls.

The mesh chosen to perform the computations is a polyhedral grid which showed the best convergence behaviour from
quadrilateral and triangular. To correctly discretize the boundary layer, y+ < 5 an inflation layer was added which included
a total thickness of X and Y elements. The final mesh for each condition is presented in Figure 2. As can be seen, 3 distinct
refinement zones were added with the finest region of the viscous mesh slightly decrease in order to facilitate convergence and
reduce computational time.

(a) Inviscid Grid (b) Viscous Grid (c) Inflation layer detail

Figure 2: Mesh topology utilised

2.2 Models and Convergence

As mentioned in the introductory text, two types of flow are to be modeled, namely viscous flow and inviscid flow. In
both types, the flow is considered in steady conditions and axisymmetric with the air behaving as an ideal gas. In both cases
compressible flow is solved. While for the inviscid case no more models where needed, the viscous case required a turbulence
model for the completion of the RANS equations. The turbulence model chosen was the k-w SST model since it has been
shown to give accurate results in this type of applications [1].

Convergence criteria was set to 10−7 for all cases. In order to ensure convergence relaxation values needed to be fine tuned
to each simulation.

2.3 Results and discussion

In this section, the results from the simulations are analysed and then compared with the Quasi One Dimensional case. For
the theoretical cases, a MATLAB code was made for easy representation and comparison between cases (see Appendix 5.1).
The nozzle dimensions were exported from the STAR CCM simulations and used as an input to compute the theoretical values
using isentropic and normal shock relations (equations 1 and 2, respectively). In this equations, A∗ represents the critical throat
area, Mx mach number just before the shock and My mach number just after the shock.
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From the analytical results of M, the pressure can be computed in the entire nozzle using equation 3, considering that at
the outlet of the nozzle, the pressure is know and is patm = 101325Pa. For the isentropic case of section 2.3.1, the stagnation
pressure p0 is constant through the entire flow, and thus can be directly calculated at the outlet of the nozzle. In this case, the
stagnation pressure obtained to ensure isentropic conditions was p0 above 2142750Pa. In the shock case of section 2.3.2, the
stagnation pressure was calculated before and after the shock, since through the shock wave there’s energy dissipation that
needed to be considered in order to obtain accurate results. From this analysis the shock case was conducted with a inlet total
pressure of 173790Pa.The entire code that was used is displayed in the appendix 5.1, and the results of the case with shock
wave were validated using example 5.6 of [2].

po

p
=

(
1+

γ −1
2

M2
)γ/(γ−1)

(3)

This comparison is not meant as a validation process since the models used are not the same: while the axisymmetric
model is being solved by STAR CCM+, the theoretical results are relative to a Quasi One Dimensional model. The area
relations were adapted for the latter case by squaring the y coordinate of the geometry used in the CFD simulation. The STAR
CCM+ data of Mach and pressure displayed in the plots of this report was taken from the centerline of the nozzle.

2.3.1 Isentropic Case

The results of Mach and pressure for the isentropic cases are plotted in Figures 3 and 4, respectively. Visual results can
also be seen in Figures 5 and 6 .At the converging section, the mach and pressure results are essentially the same for all 3
models, the flow enters subsonic and at the throat Mach number is sonic. But after that, while the two CFD models stay in
agreement, the Quasi 1D model shows a different behaviour especially at the end of diverging portion. The pressure at the
outlet is practically the same for all of the models (and consequently Mach too) but the inviscid model shows a slightly smaller
pressure at the outlet. This can be explained by the theory behind the Fanno Flow, where the presence of friction forces causes
supersonic flow to decelerate, in addition, the formation of the boundary layer in the viscous simulation acts as a constrain to
the flow, reducing effective area, which for supersonic flow, also leads to its deceleration as seen in 3.

Figure 3: Mach variation for isentropic case Figure 4: Pressure variation for isentropic case

Figure 5: mach inv
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Figure 6: mach visc

The presence of the boundary layer changes the overall shape of the nozzle in terms of effective cross sectional area,
leading to differences in flow properties also changes other parameters such as the relation between the exit area and the
critical area. This by itself makes the solving problem much more complex. The presence of the no-slip condition can be
verified with a visual comparison between Figures 7 and 8, where in the latter, the Mach (velocity) can be seen going to zero.

Figure 7: Wall detail (Inviscid) Figure 8: Wall detail (Viscous)

2.3.2 Shock Case

The results of Mach and pressure for the shock wave cases are plotted in Figures 9 and 10, respectively. As it was seen
before for the isentropic case, at the converging portion of the nozzle, the 3 models show reasonable accordance. After the
throat, but before the shock, both CFD simulations have the same Mach (analytical model has higher Mach), but pressure is
smaller for the inviscid one. The shock wave happens sooner for the viscous model, the inviscid model’s shock is next and
finally for the analytical model that uses the normal shock model (equation 2), the shock takes place the latest. The different
behaviour between the models can also be justified by the presence of the boundary layer, similar to what happened with the
isentropic case. Effective cross sectional area is decreased which makes the shock happen sooner for viscous flow. To note
the different behaviour of the flow after the shock, decelerating with area increases, typical to subsonic flow.

As explained in the introductory sections, after the shock, flow separation is very likely, due to the nozzle area increasing
and the flow being subsonic, which causes an adverse pressure gradient. The presence of this separation in the simulation
performed 14 may be the main origin for the oscillations in Mach and pressure values found just after the shock.

Figure 9: Mach variation for shock case Figure 10: Pressure variation for shock case
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Figure 11: mach inv shock

Figure 12: mach visc shock

The presence of shocks inside the nozzle causes loss in its efficiency and are not desired for the vast majority of its
applications. This loss in efficiency can be represented by the total pressure of the flow (13). As is presented, the total
pressure suffers an abrupt reduction through the shock wave, with the total pressure difference being higher for the inviscid
flow. The loss of total pressure is a result of the conversion of kinetic energy into internal energy inside the shock. In viscous
flow, viscosity allows for the dissipation of kinetic energy in the form of heat along the shock wave resulting in a lower total
pressure loss across the shock.

Figure 13: Total pressure variation for shock case

Figure 14: Detail of flow separation after shock

2.3.3 Other flow scenarios

In addition to the main flows intended to be analysed with this problem, this subsection shows other flow patterns possible
with a converging-diverging geometry, just by varying inlet total pressure. All simulations utilize inviscid flow. If pressure is
very close to the atmospheric pressure, critical flow is not reached in the throat, with subsonic regime in all domain (Fig. 15)
namely full subsonic conditions throughout the nozzle. As pressure in the reservoir increases, sonic conditions are reached,
with a shock forming inside the nozzle (shock condition analysed in the main work).
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Figure 15: Mach for a Subsonic nozzle

At a certain total pressure, the shock passes the exit of the nozzle, forming a oblique shock at the exit (overexpanded
nozzle) (Fig. 16). A pressure is reach such that flow is isentropic throughout(isentropic condition analysed in the main work).
If pressure keeps increasing, underexpantion condition is reached, with an expansion wave at the noozle exit (Fig. 17).

Figure 16: Mach for a Overexpended nozzle

Figure 17: Mach for a Underexpended nozzle

3 1D Sod’s Shock Tube

The shock tube is a crucial tool in fluid dynamics research, facilitating not only the study of compressible flows and shock
wave interactions but also combustion reactions. In this section, the second problem of this project is addressed in which
the Sod’s Shock Tube is solved through the use of CFD and then compared with the analytical results. This problem is a
benchmark test commonly used for code verification purposes.

The Sod shock tube is a simple but powerful tool for studying shock waves and rarefaction waves in a gas. The problem
consists of a tube filled with two different gases, one high-density and high-pressure and the other low-density and low-
pressure. When the diaphragm separating the two gases is suddenly removed, the gases mix and form a shock wave and
a rarefaction wave. The shock wave propagates through the gas, compressing and heating it, while the rarefaction wave
propagates in the opposite direction, expanding and cooling the gas. The behaviour of these waves can be used to understand
a wide range of phenomena, including explosions, collisions, and the structure of the atmosphere.

3.1 Theoretical models

Sod’s shock tube represents a unique instance within the broader framework of Riemann problems. The Riemann problem,
a conceptual construct in mathematics, serves as a model to elucidate the dynamics of a gas confronted with the sudden
juxtaposition of two distinct states (e.g., varying densities, pressures and velocities), resulting in a pronounced discontinuity.
This phenomenon is aptly described by the Euler equations, a collection of hyperbolic partial differential equations grounded
in the principles of mass, momentum, and energy conservation.

The formulation of the Riemann problem adopts the guise of an initial value problem, where the initial conditions manifest
as the disparate states of the gas on either side of the disruptive juncture. The primary objective is to ascertain the solution to the
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governing equations of gas dynamics (Euler equations) that encapsulate its evolution over time subsequent to the emergence of
the discontinuity. The derived solution manifests as a series of waves propagating trough the gas, encompassing diverse types
such as shock waves, rarefaction waves, and contact discontinuities. While analytical solutions exist for certain rudimentary
scenarios, the majority of practical applications necessitate the employment of numerical methods. In this report the results
obtained with numerical models were compared with the analytical results of Hirsch [3].

3.2 Shock tube problem

To streamline the problem and facilitate mathematical analysis, several assumptions are incorporated. The flow is confined
to one dimension (1D), the gas is idealised as perfect gas, the fluid is considered inviscid and the tube is assumed to be infinitely
long.

Distinct properties characterise the two gases separated by the diaphragm, denoted as L for left and R for right. These
properties are presented in the table 1, include a pressure ratio of 10.

Density ρ(kg/m3) Pressure p(kPa) Temperature T (K) Velocity v(m/s)

Left Gas Side 1 1×105 348.43 0

Right Gas Side 0.01 1×103 348.43 0

Table 1: Properties of the two gases.

Upon the instantaneous removal of the diaphragm, a shock wave gives rise to five distinct zones withing the tube, as
depicted in figure .The corresponding x-values are specific to the case under examination, considering the mention properties,
and the time instant t = 0.0039s.

Figure 18: Shock Tube Representation

Zone 1 and 5 illustrate the initial conditions on either side of the tube. When the diaphragm ruptures at time t = 0, a
pressure discrepancy travels to the right within the low-pressure gas, concomitantly triggering an expansion fan that propagates
leftward in the high-pressure gas. Simultaneously, a contact discontinuity, demarcating the two gas zone, moves to the right
within the tube.

Zone 2, represented by the striped region, exemplifies the expansion wave, where flow properties undergo continuous
variations, as elaborated upon later. The green line delineating regions 3 and 4 signifies the contact discontinuity. Within
these regions, pressure and velocity remain constant, while density, entropy, and Mach number experience a discontinuity.
The shock wave is denoted by the yellow line, marking the boundary between regions 4 and 5.

3.3 Numerical Models

Given that this problem was initially designed to assess various numerical methods, this section will present insights into
two employed techniques: ROE-FDS and AUSM+FVS. Both methods are designed to address the Euler equations previously
mentioned, accommodating a broad spectrum of flow conditions ranging from subsonic to supersonic. Notably, they exhibit a
capacity to handle discontinuities with high precision and stability.

The Roe Flux Differencing Scheme is a numerical methodology, rooted in Godunov’s scheme, utilised for approximating
solutions to partial differential equations (PDEs) governing fluid flow. It employs the Roe averaging technique, which com-
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bines the left and right states of a fluid at specific point in space and time through a linear combination to calculate the flux at
that point.

AUSM+FVS (Advection Upstream Spitting Method plus Flux Vector Splitting) represents another numerical approach
that divides the flux into two components: convective and pressure parts. The Flux Vector Splitting aids in capturing the
influence of neighbouring fluid states effectively. Upwind differences play a crucial role in this scheme.

3.4 Numerical Results

To conduct the numerical simulations, it was imperative to establish certain parameters: Employed a second-order spatial
discretization and implicit temporal discretization; Defined the time step for numerical solver analysis at t = 1× 10−4 s;
Maintained a constant Courant number at 50; Imposed a maximum of 10 inner iterations.

The repercussions of altering the time step and the maximum inner iterations on the numerical solution will be scrutinized
in subsquent analysis.

3.4.1 Mesh Generation

Althouth the problem is one-dimensional, the mesh is constructed in a three-dimensional manner. Innitiallly, a 20-meter
block is generated and partitioned into sections, with each cell representing a small block. Subsequently, the block is simplified
into a line (1D), disregarding the y and z coordinates and introducing a plane section at the midpoint.

The mesh is designed to have approximately 50 cells, and, due to a substantial portion of the domain exhibiting the same
properties, the mesh is refined in the central region while being coarser at the beginning and end. This refinement occurs
between −4 m and 4 m, resulting in a total of 50 cells within the block. The refinement pattern is illustrated in figure 19. The
finer cells measure 0.297 m, while the coarser ones have size of approximately 0.99 m. As we will explore later, the chosen
number of cells proves inadequate for revealing significant variations when altering the numerical settings.

Figure 19: Mesh generated between -10 and 10 m.

3.4.2 Numerical Solvers

Figure 20: Comparison of the solvers analysed us-
ing velocity of air along the shock tube.

To assess the performance of both numerical solvers, two simulations
were executed. Figures 21, 22, 23 and 24, illustrates the results for four
properties (pressure, density, Mach number, and entropy), while figure 20
focuses on velocity - a parameter where differences between the solvers
are more pronounced. The presented domain spans from −10 m to 10 m.

Notably, discrepancies between the solvers become apparent in dis-
continuities and variations of slope, situations for which these methods
are specifically designed. The Roe-FDS solver demonstrates a quicker
response to variations compared to AUSM+FVS. It is observed in figure
20 the oranges dots consistently lead the blue ones. This discrepancy
arises from the discretization strategies employed (central and upwind).
Given that the upwind scheme excludes information from the front/right
cell, it possesses less upstream flow information than the central scheme.
Consequently, it only acquires that information when closer to the discon-
tinuity. Despite the faster initial reaction to the discontinuity, the disparity
is swiftly compensated, and AUSM+FVS reaches the stabilised region of
the curve simultaneously or even faster than Roe-FDS.
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Figure 21: Comparison of the solvers analysed using
density of air along the shock tube.

Figure 22: Comparison of the solvers analysed using En-
tropy of air along the shock tube.

Figure 23: Comparison of the solvers analysed using
pressure of air along the shock tube.

Figure 24: Comparison of the solvers analysed using
Mach of air along the shock tube.

3.4.3 Different Times steps

In addition to exploring different solvers, various time steps were experimented with to assess their impact on the results.
The chosen solver for this analysis was AUSM+FVS, with the time instant set at t = 0.0039 s. Three distinct time steps were
selected: ts = 1×10−4 s, ts = 1×10−5 s and ts = 1×10−6 s. For brevity, only the velocity will be discussed in this subsection,
as it is where the variations are most pronounced.

An examination of the figure 26 unveils that significant differences only manifest in the discontinuity. In the initial slope,
the circles, dots and triangles overlap, signifying no discernible variation among time steps. Notably, in the discontinuity, the
larger time step exhibits an earlier response, with the triangles (ts = 1×10−4 s) consistently leading the others.

3.4.4 Different maximum inner interaction

The number of inner interactions signifies the iterations executed before advancing to the subsequent time step. It serves
to enhance the residuals and is expected to contribute to an improved final solution. Figure 25 illustrates the impact of this
parameter on velocity.

Similar to examination of time steps, the noticeable differences across simulations, when altering the maximum number of
inner iterations, are predominantly observed in the discontinuity zone. With an escalation in the number of iterations (depicted
by blue circles), the numerical solution converges closer to the analytical solution, aligning with expectations.
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Figure 25: Comparison of the different maximum inner
iterations analyzed using the velocity of air along the
shock tube.

Figure 26: Comparison of the different time steps ana-
lyzed using the velocity of air along the shock tube.

4 Conclusion

In conclusion, our project involved two distinct simulations, each delving on the physics and applicability of compressible
flow valuable insights into fluid dynamics and shock wave behavior. The results obtained through the finite volume simulations
of compressible flows were compared to the analytical results obtained with classical theory.

The first part of this project focused on the CFD analysis of convergent-divergent nozzles. The results in the isentropic
case without the shock for both CFD simulations are very similar and show a slight disagreement at the diverging section
in comparison with the analytical results. For the case with the shock wave there’s a bigger difference between models,
especially in the position of the shock wave, that happens closest to the throat in the viscous model. By increasing/decreasing
total pressure above the isentropic one, underexpanded/overexpanded conditions could be simulated in CFD.

The second part of this project centered around simulating a shock tube, specifically addressing Sod’s problem. This
classic problem serves as a benchmark for testing numerical methods in capturing shock wave interactions. The aim was
to replicate the physical conditions of a shock tube and compare our results with the analytical solution. The comparison
between numerical methods, specifically ROE-FDS and AUSM+FVS, revealed that AUSM+FVS produced better results that
are closer to the analytical solution. Additionally, variations in time steps and inner iterations demonstrated significant impacts
on the numerical solution, emphasizing the need for careful parameter selection in simulations. Overall, this study contributes
insights into the capabilities and limitations of numerical methods in fluid dynamics research.
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5 Appendix

5.1 MATLAB code for Quasi-1D model

Listing 1: Quasi_1D_model.m

A_input =[3.000439189 3.002274115 2.999852088 2.989816582
2.972326568 2.948230371 2.918469069 2.884189856 2.84672092

2.80733904 2.768238815 2.731751497 2.697766167
2.66456397 2.630500302 2.593937324 2.553139143 2.50595434

2.450851713 2.387464174 2.316694279 2.241427368
2.164070884 2.08544267 2.00572613 1.924899177 1.843444841

1.761672129 1.679524715 1.596923484 1.513077707
1.426252989 1.336761441 1.249396202 1.170588306 1.105236363

1.055879148 1.022819244 1.004918243 1 1.005094242
1.017770383 1.037090006 1.062949813 1.095532569

1.135407193 1.182994419 1.238769308 1.304213063 1.381026186
1.470836321 1.57597014 1.699151942 1.844613464

2.011748972 2.187387616 2.35879452 2.520355125 2.665463739
2.788418934 2.88558951 2.953011845 2.989460687

3.003691701 3.0098538 3.013739676 3.014145587 3.009222487
3.002208145

];
x_input =[ -0.001282205 -0.005173659 -0.010428756 -0.015718374

-0.020976354 -0.026182152 -0.031379677 -0.036592884 -0.041797588
-0.047003341 -0.052230085 -0.05746015 -0.062684545

-0.067910314 -0.073135697 -0.078361903 -0.083593206 -0.088853693
-0.094091179 -0.09922596 -0.104333642 -0.109477151

-0.114625219 -0.119760428 -0.124894764 -0.130046333 -0.135195295
-0.140327092 -0.145446345 -0.150552923 -0.155649595

-0.16073237 -0.165796328 -0.170855286 -0.175937421 -0.181061804
-0.186230194 -0.191432911 -0.196659083 -0.201915382

-0.207171197 -0.21238155 -0.217579834 -0.222791109 -0.228000876
-0.233217891 -0.238414564 -0.243551204 -0.248662169

-0.253765909 -0.258836899 -0.263864595 -0.268828791 -0.273697089
-0.278476209 -0.283218992 -0.288028761 -0.292975513

-0.298007407 -0.303083525 -0.308214338 -0.313393251 -0.318604433
-0.323834099 -0.329071737 -0.334307818 -0.339538405

-0.344767747 -0.348691738
];
A=flip(A_input ,2);
x=flip(x_input ,2);

%inputs
gamma =1.4;
patm =101325;%[Pa]
shock=true; %CHANGE THIS TO TRUE TO ENABLE SHOCK
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shock_position =45; %45 is the position closest to example 5.6 of Aero III book

if shock
limit=shock_position;

else
limit=length(A);

end

%solves isentropic relation
count =1;
for i=1:( limit)

if count <30
Mt1 =0.09;

else
Mt1 =2;

end
Mt2 =0;
flag = true;
while flag

Mt2 = Mt1 - m(gamma ,Mt1 ,A(i))/der(gamma ,Mt1);
if abs(Mt1 -Mt2) <1*10^-6

flag = false;
else

Mt1 = Mt2;
end

end
M(i)=Mt2;
count=count +1;

end

if shock
%Properties after and before shock: x is before shock and y after shock

Mx = M(shock_position);
My = sqrt((Mx ^2+2/( gamma -1))/(2* gamma*Mx^2/( gamma -1) -1));

%Update critical area values after shock
Axy_Acrit1=A(shock_position);
Axy_Acrit2= (2*(1+( gamma -1) *0.5*My^2)/(gamma +1))^(( gamma +1) /(2* gamma -2))/

My;
A_new=A*Axy_Acrit2/Axy_Acrit1;

for i=( shock_position +1):( length(A))
Mt1 =0.09;
Mt2 =0;
flag = true;
while flag

Mt2 = Mt1 - m(gamma ,Mt1 ,A_new(i))/der(gamma ,Mt1);
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if abs(Mt1 -Mt2) <1*10^-6
flag = false;

else
Mt1 = Mt2;

end
end

M(i)=Mt2;
count=count +1;

end
end

figure (1)
hold on
plot(x,A,"k",LineWidth =3)
plot(x,M,'r.',"MarkerSize ",20)
if shock

position =(x(shock_position)+x(shock_position +1))/2;
xl3=xline(position ,'--k',{'Shockwave '});
xl3.LabelVerticalAlignment = 'top';
xl3.LabelHorizontalAlignment = 'left';
xl3.FontSize = 9;

end
legend ("A/Acrit1","Mach",'Location ','east')
axis ([ -0.35 0 0 3.1])

r_T_T0 =1./(1+M.^2*( gamma -1) /2);
r_p_p0 =( r_T_T0).^( gamma/(gamma -1));
if shock

r_py_px = 1+2* gamma*(Mx^2-1)/(gamma +1);
r_p02_py =(1+( gamma -1)*My ^2/2)^( gamma /(gamma -1));
r_px_p01 =(1+( gamma -1)*Mx ^2/2)^( gamma /(1-gamma));
r_p02_p01=r_p02_py*r_py_px*r_px_p01;
p02=patm/r_p_p0(end)
p0=p02/r_p02_p01
count_2 = 1;
for i=1:( length(A))

if shock_position >= count_2
p(i)=r_p_p0(i)*p0; %01 conditions

elseif shock_position <count_2
p(i)=r_p_p0(i)*p02;%02 conditions

end

count_2 = count_2 + 1;
end

else
p0=patm/r_p_p0(end)
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p=p0*r_p_p0;
end

figure (2)
plot(x,p)

function f = m(gama ,Mt ,A_ratio)
f = (2*(1+( gama -1) *0.5*Mt^2)/(gama +1))^(( gama +1) /(2*gama -2))/ Mt - A_ratio;

end

function df = der(gama ,Mt)
df = 2*(Mt^2-1) *((2+( gama -1)*Mt^2)/(gama +1))^(( gama +1) /(2*gama -2))/((gama

-1)*Mt^4+2* Mt^2);
end

15


	Introduction
	Convergent-Divergent Nozzle
	Domain and Boundary conditions
	Models and Convergence
	Results and discussion
	Isentropic Case
	Shock Case
	Other flow scenarios


	1D Sod's Shock Tube
	Theoretical models
	Shock tube problem
	Numerical Models
	Numerical Results
	Mesh Generation
	Numerical Solvers
	Different Times steps
	Different maximum inner interaction


	Conclusion
	References
	Appendix
	MATLAB code for Quasi-1D model



