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1 Introduction

Computational Fluid Dynamics (CFD) is an engineering tool applied to various fields in project design that allows the
analysis of different flow variables in problems of heat transfer and general fluid flow. Despite its current accessibility through
mainstream codes, CFD is still as much an art form as it is a strict science, which makes its results hard to reliably evaluate
for new users and people without the necessary knowledge in fluid dynamics and numerical methods, that might not have the
sensibility to properly create the right setup and give the right inputs. The purpose of this project is to respond to the suggested
work of HW1 that aims to provide some of this sensibility when dealing with error estimation and general application of the
Finite Volume Method.

The first part of the present work on the numerical estimation of first derivatives for two distinct functions, φ1(x) =
x(cos(0.01x))2 and φ2(x) = x(cos(0.1x))2, at x = 150, when applying different finite differences methods. These methods
were a centered 4th order finite difference scheme and a 1st order backward finite difference scheme. The investigation
includes an analysis of error decay with varying grid sizes, the determination of the order of accuracy for each formula, and
the plotting of truncation error estimates. This first part provides valuable insights into the performance and suitability of these
numerical methods for derivative approximations.

The second part of the project deals with the linearized potential flow equations and the small perturbations approach with
which it was possible to compute the 2D flow field around a diamond airfoil. This analysis involved the application of the
Finite Volume Method, different discretization schemes and different solvers. Furthermore, different settings for the mesh
used were also studied, from grid refinement, to the influence of the application of a non-uniform mesh.

2 Finite Differences

2.1 Methodology

In this section, the methods employed to address the problem of estimating the first derivatives of the functions φ1(x) =
x(cos(0.01x))2 and φ2(x) = x(cos(0.1x))2 at x = 150 will be discussed, using two different finite differences formulas.

Firstly, the functions of interest, φ1(x) and φ2(x), were defined, and the point of interest, x = 150, using MATLAB. For a
rigorous analysis, the analytical expressions for the first derivatives of φ1(x) and φ2(x), denoted as dφ1

dx and dφ2
dx , were defined.

These analytical derivatives serve as the reference values for assessing the accuracy of the numerical approximations.
For the finite difference approximations, two distinct finite difference formulas were applied to approximate the derivatives

of φ1 and φ2. In the first case, the 4th order central difference scheme, which combines forward and backward differences to
provide a high level of accuracy, was utilized. The formula used is represented as 1, where h represents the step size used to
discretize the domain.

∂ f
∂x

≈ − f (x+2h)+8 f (x+h)−8 f (x−h)+ f (x−2h)
12h

(1)

The formula 2 was used to employ the simpler 1st order backward difference formula, which is suitable for basic approx-
imations.

∂ f
∂x

≈ f (x)− f (x−h)
h

(2)

To assess the accuracy of numerical methods, the absolute error between the numerically estimated derivatives and their
corresponding analytical values was calculated for various grid sizes. The error computation is expressed in 3.

Error =
(

∂φ

∂x

)
exact

−
(

∂φ

∂x

)
i

(3)

This error quantification provides insights into the accuracy and its variation with the grid sizing
In parallel with the error computation, the truncation error for both finite differences formula is estimated by the first term
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neglected in the Taylor Series. To compute the truncation error from each finite differences the Taylor series expansion around
x given by 4 is used.

ϕ(x+h) =
∞

∑
n=0

ϕ(n)(x)
n!

hn = ϕ(x)+ϕ
′(x)(h)+

1
2!

ϕ
′′(x)(h)2 +

1
3!

ϕ
(3)(x)(h)3 +

1
4!

ϕ
(4)(x)(h)4 +

1
5!

ϕ
(5)(x)(h)5 (4)

With some manipulation, the truncation error, T (x), for centered finite differences is derived, as given by 5, and for
backward finite differences, as given by 6.

T (x) =
ϕ

∂x
− −ϕ(x+2h)+8ϕ(x+h)−8ϕ(x−h)+ϕ(x−2h)

12h
=

ϕ(5)(x)h4

30
+O(h6) (5)

T (x) =
ϕ

∂x
− ϕ(x)−ϕ(x−h)

h
=

ϕ(2)(x)h
2

+O(h2) (6)

Finally, to rigorously evaluate the accuracy of each formula, the order of accuracy for each is analytically determined. The
order of accuracy can be observed through the first term of the truncation error as demonstrated in 5 and 6, which exhibits
orders of O(h4) and O(h) respectively. This observation confirms that the order of accuracy for the 4th order finite difference
method is 4, while for the 1st -order finite difference method it is 1.

2.2 Results and Discussion

To address the first part of the prompt, one begins by plotting the error as a function of the grid size for both finite
differences formulas, namely the 4th order centered and 1st order backward methods, applied to the function φ1, as shown in
figure 2 and for φ2, as displayed in figure 3.

Figure 2: Variation of the error of ϕ1 with grid size. Figure 3: Variation of the error of ϕ2 with grid size.

By analyzing the above plots, the order of accuracy for each finite difference formula can be determined graphically. This
graphical analysis involves fitting a linear regression, like the one represented in 7, to the data within the range where the
asymptotic behavior occurs on a log-log scale and observing the slope, p, of the resulting line.

log|error|= plogh+ logC (7)

For larger step sizes on the right side of figures 2 and 3, the error versus step size plot appears as a straight line on the
log-log scale. This behaviour is consistent with the equation 7.
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The 4th order centered formula exhibits a slope of approximately 4 in both plots (in 2 and 3), indicating an order of
accuracy of approximately 4, this is, a decrease in mesh size of 1 order of magnitude leads to a decrease in the error of 4
orders. The same pattern is observed for the 1st order backward formula, with a slope of approximately 1, confirming the
fourth and first order error for each respective finite difference expression used in this analysis as demonstrated in 2.1.

In the initial part of the graphs, for small values of h, where h < 10−1 for φ1 and h < 10−2 for φ2 for the 4th order finite
difference, and for the 1st order where h < 10−7 for φ1 and h < 10−6 for φ2, it is noticeable that the finite difference analysis
suffers from another source of error. This can be explained by the fact that in the numerator of the finite difference expression
(equations 1 and 2), as his value becomes smaller, it involves the subtraction of nearly equal numbers to obtain the error.
This type of error is referred to as round off error, stemming from the need for a computer to round real numbers to a finite
precision.

The next step involves plotting the estimation of truncation error for both finite difference formulas (4th order centered and
1st order backward) on a log-log scale for both function, as depicted in figures 4 and 5.

Figure 4: Variation of the truncation error of ϕ1 with grid
size.

Figure 5: Variation of the truncation error of ϕ2 with grid
size.

In these graphs, it is evident that the truncation error is directly proportional to the step size, h. As the step size decreases,
the truncation error decreases as well. Additionally, it is observed that the lines representing the truncation error and the
straight error line for each function closely coincide, affirming the accuracy of the results.

3 Finite volume in fluid mechanics

3.1 Mesh and Equations Discretization

The equations that model the problem are given bellow, being the linearized potencial flow equations applied to small
perturbations. Equation 8 is applied to supersonic and subsonic flow (linear equation) and equation 9 transonic flow (non-
linear equation):

∂ 2φ

∂x2

(
1−M2

∞

)
+

∂ 2φ

∂y2 = 0 (8)

∂ 2φ

∂x2

(
1−M2

∞ − (1+ γ)
M2

∞

U∞

∂φ

∂x

)
+

∂ 2φ

∂y2 = 0 (9)

Assuming α as the coefficient of the first term in each equation, the general discretization applying finite volume method
gives:
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∆yP

(
αe

∂φ

∂x

∣∣∣∣
e
−αw

∂φ

∂x

∣∣∣∣
w

)
−∆xP

(
∂φ

∂y

∣∣∣∣
n
− ∂φ

∂y

∣∣∣∣
s

)
(10)

When utilising the linear equation, α is constant and thus does not change with iterations, being treated as a constant
(αw = αe = 1−M2

∞). This does not happen for the transonic equation were α depends on ∂φ

∂x , thus needing to be updated
during the iteration process, as it will be explained later. The value of α at the faces was computed by upwind differences.

Depending on the flow regime entering and leaving the cell (represented by α), the gradients in the general discretized
equation needed to be calculated differently, in order to have a more physically accurate model. The general approach was
to approximate the gradient in x by central differences when α > 0, to better capture the parabolic nature of the resultant
equation, and if α < 0, upwind differences were used so that the hyperbolic behaviour could be taken into consideration
(shown in equation 11).For both cases, central differences were used for the gradients in the y direction.

∂φ

∂x

∣∣∣∣
e
=

φE −φP

∆xP−E
i f αe > 0;

∂φ

∂x

∣∣∣∣
w
=

φP −φW

∆xP−W
i f αe > 0;

∂φ

∂x

∣∣∣∣
e
=

φP −φW

∆xP−W
i f αe < 0;

∂φ

∂x

∣∣∣∣
w
=

φW −φWW

∆xW−WW
i f αe < 0

(11)
Boundary conditions (BC) were given in all domain limits except for the outlet in supersonic flow, where this condition is

not necessary due to the equation’s hyperbolic behaviour.
For all cases, there is a homogeneous Dirichlet boundary condition applied at the inlet of the domain, that is needed in

order to obtain an unique solution that can be interpreted. This BC could have been non-homogeneous, a different solution
with the same physical meaning would have been obtained; the BC being homogeneous simplifies the problem. Special care
was taken in the discretization of the inlet volumes where the distance used needed to be taken as the distance from the inlet
face to the centroid of the 1st volumes, which gives a stronger influence of that face of the volume on its value, compared with
the other faces. Also, if upwind differences were used, the same needed to be considered when solving the equation in the
volumes at the 2nd column of the mesh grid.

Homogeneous Newman BC’s were specified at the rest of the boundaries, except at the inlet of subsonic regime and at the
outlet of supersonic regime. These represent open boundaries that do not add/take any momentum to/from the domain, i.e.,
the flux of the potential field through the boundaries is null. A special case occurs at the bottom boundary where the airfoil is
to be modeled such that an upward flux is given as ∂φ

∂y

∣∣∣
s
=U∞

∂y
∂x , simulating, in this small perturbation approach, the presence

of the airfoil.

3.2 Code’s General Description

This section describes the code created to simulate the behavior of fluid flow over the airfoil. This program’s main goal is
to offer insights into the dynamics of the flow around an airfoil under various flow regimes.

The key input parameters, which define the conditions under which the simulation will occur, are first defined by the
program. The geometrical characteristics of the airfoil, the reference temperature and pressure, and the Mach number are
some of these factors.

The creation of a computational mesh is one of the program’s main components. The discrete grid cells created by
this mesh allow for the approximation of fluid properties at specific locations within the simulation domain. Considerable
consideration is given to variables including the domain size, the number of grid cells, and information about the airfoil’s
shape. Furthermore, the possibility of having an non unifom mesh can also be addressed by the code, providing the possibility
of increasing accuracy in important parts of the domain with a relatively small penalty in computational time, depending on
the mesh characteristics.

The solver, which is at the center of the program, is in charge of iteratively updating the flow variables (in this case the
potential field) across the mesh. The Successive Over-Relaxation (SOR) approach is the base of the iterative process. This
iterative approach generates a new solution until either a specified level of convergence is reached (for both residuals and
error) or a maximum number of iterations is executed. The relaxation factor is one element that affects how well the method
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performs. In order to accelerate convergence, this factor can be changed throughout iterations, this is, increasing its value
once the error drops to a small enough value when convergence is almost guarantied.

Another important aspect of the program is its capability of handling transonic flow conditions, and the non-linearities
associated with them. The program modifies the value α after some iterations of the SOR solver to properly account for these
conditions, returning with the new values of the coefficients after the al pha update.

Finally, once the iterative process has converged, the code offers post processing capabilities for visualizing the results.
Plots of the flow field properties like velocity, pressure, and temperature are included in these visualizations. Error residuals
are also plotted in order to assess how accurate the solution is.

3.3 Iterative Solver

After the discretization of the equations governing the flow, the matrices A e b are constructed, which represent the
coefficient matrix and the source vector of these equations in a matrix system of the form Aφ = B, where φ is the potential
function of the flow. Once this system is created, it is necessary to solve it in order to obtain the resulting potential. For
this purpose, the Successive Relaxation Method (SOR) has been implemented. To implement the iterative SOR method, two
strategies were used. The first strategy was based on formula 12, solving the system in a matrix form - hereafter referred to as
"SOR1."

φ
k+1 = φ

k +ω

(
φ

k+1
∗ −φ

k
)
. (12)

For obtaining φ k+1
∗ , a first approximation by the Gauss-Seidel

x(k+1) = (L+D)−1b− (L+D)−1Ux(k), (13)

considering A = L−D−U , where L is the lower matrix, D is the diagonal matrix and U the upper matrix. The second
strategy solved the system using the equation 14, element by element - hereafter referred to as "SOR2." These two methods
for solving the system using SOR, although equivalent, will have different performances.

φ
i,k+1
P = (1−ω)φ i,k

P +
ω

ai
P

(
∑
c1

ai
c1

φ
i,k
c1

+∑
c2

ai
c2

φ
i,k+1
c2

+bi
P

)
(14)

In order to compare the two described strategies, similar simulations were conducted, where the Mach number at the
inlet of the domain and the type of SOR used were changed. Another parameter that was changed in the simulations was
the number of successive SOR iterations, which helps to determine with more precision the iteration at which the method
achieved convergence. This parameter is important because it allowed the user to make updates to the relaxation factor while
the simulation was running (see section 3.6). The simulation parameters used for the flow, mesh, and convergence criteria are
summarized in the table 1. In Section 5.1, we present the evolution of errors and residuals (figures 12, 13, 14) during the flow
solution process for each regime. In all cases, we observe a consistent trend of decreasing both the residue and the error as
iterations progress.

The table 2 displays the main results of using the two previously described strategies, specifying values for runtime,
number of iterations, error, and residue resulting from the iterative method. The results are presented based on flow regimes:
subsonic, transonic, and supersonic for the values shown in table 1. This table also provides runtime information solely for
the purpose of temporal comparison. It should be noted that if a faster or slower computer were used, the runtime would vary.
However, the number of iterations would remain constant as the iterative method would require the same number of iterations
to achieve the desired tolerance.

In general, both strategies were able to reach the tolerance of 1e-3 when solving the system with the desired precision.
Another important point to consider is the significant difference in convergence speed between the transonic regime and the
subsonic and transonic regimes. This is due to the nonlinearity of the potencial flow equation and the consequent need of the
update of the parameter α throughout the iterative process.
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SIMULATION PARAMETERS

FLOW
Mach {0.2; 0.91, 2.2}

MESH
x domain [0, 20]
y domain [0, 15]
No. of cells x 40
No. of cells y 40

CONVERGENCE
Function Tolerance 1e-3
Number max of iterations 100000
Successive SOR iterations {10,10,2}

Table 1: Simulations parameters for SOR methods
comparison

SOR1

Timer [s] Iterations Error Residual
Subsonic 3.13 48 7.62e-04 9.51e-04
Transonic 45.11 920 4.09e-04 9.97e-04
Supersonic 1.93 24 3.48e-04 1.98e-04

SOR2

Timer [s] Iterations Error Residual
Subsonic 3.72 364 6.73e-05 9.99e-04
Transonic 329.15 42350 1.05e-05 1.00e-03
Supersonic 0.40 26 9.74e-04 8.56e-04

Table 2: General results of SOR solvers for the three flow con-
ditions

3.4 Uniform mesh analysis

Firstly, an uniform mesh was used to solve each of the 3 problems. As it was stated in section 3.2, for this type of mesh, the
user can set the domain limits in the x and y directions, the airfoil position and the number of finite volumes per column/row
of the mesh grid.

Thus, this section will touch on this aspects of the project. Section 3.4.1 will explain how to properly choose the domain
size and airfoil position for each of the cases, and sections 3.4.2, 3.4.3 and 3.4.4 will compare the solutions of each for
progressively more refined meshes.

In sections 5.2, 5.3 and 5.4 of the Appendixes are shown the most refined meshes that were obtained.

3.4.1 Domain size and airfoil position

Some attention needs to be given to this parameters in order to reduce the time and number of iterations necessary to
solve the problem properly. In addition, the physical nature of each of the cases needs to be taken into account in order to not
overlook important phenomena of the flow.

In the subsonic case the linearized potential equation is parabolic, which means that what is happening upstream of the
flow propagates in all directions of the domain, including downstream. Due to this fact, the position of the airfoil needs to be
in the middle of the domain in order to capture this behaviour. For this case, we found that a domain of 10 by 5 meters has
the proper size to capture these propagation effects, without the computational cost of larger domains; a bigger domain can
obviously be used, at the cost of a bigger computational effort, that is being "wasted" computing volumes that are very far
from the airfoil and practically irrelevant to the solution.

For the supersonic case the nature of the equation is hyperbolic, i.e., information only propagates upstream. Due to that,
the airfoil was positioned closer to the inlet border of the domain (the middle of the airfoil is at x = 1.5), without any effect to
the solution. If the domain was to large in the x direction or too small in the y direction the shock waves would reflect at the
boundaries, as represented in figure 1 in the cover of this project. This is not desirable for this study, so for this reason, the
domain chosen in this case is smaller in the x direction than the previous one (5 by 5 meters).

Lastly, the transonic case, it is mostly subsonic except near the airfoil, where there are regions where the flow goes
supersonic. Because of that "mostly subsonic" behaviour, for this case the airfoil was placed at the center of the domain,
similar to the subsonic case. Due to the non-linear behaviour of the equation, a larger domain was chosen, namely 15x15
meters. This ensures that the gradients of the solution were almost null closer to the borders, specially at inlet and outlet. This
change mitigates problems related with the update of the α constant between iterations.
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In the following subsections the limits of the colorbar of the Potential, Mach and density field plots was maintained
constant so that the difference in accuracy between each mesh was immediately perceptible. In subsonic and supersonic the
tolerance after each the solution was considered converged was 10−5 while of transonic, due to the increased complexity of
the equation, the limit was 10−3. The methods explained in section 3.6 about the variable relaxation factor were used in these
following sub sections in order to run the simulations faster.

3.4.2 Subsonic uniform mesh refinement

Figure 6 shows the comparison between the first and last meshes of the refinement. The meshes nº1 to nº3 had 40x20,
80x40 and 160x80 volumes, respectively. In the appendix, figures 15 show mesh nº3 but with bigger images. As it can be
seen, the general physics of the problem are captured : as expected there is a reduction of the velocity when approaching the
airfoil and a increase on the top part of it.

As for the refinement, it is apparent that in mesh nº1 the strong gradients near the airfoil are not nearly as good compared
to mesh nº3. In mesh 1 the highest Mach number is Mmax = 0.312 while in mesh nº3 Mmax = 0.329. Also, other less strong
gradients, are not as sharply defined compared to mesh nº3.

Other aspect that is very noticeable between the meshes is how the disturbances near the airfoil don’t seem to affect the
inlet and outlet boundaries as much in the most refined mesh, while in the other ones, there’s a clear influence of the airfoil. At
the inlet, closer to the bottom boundary, Mach number is lower than at the inlet top boundary, this is not supposed to happen.

Time spent in the convergence with mesh nº3 was the highest (approximately 60 times more). The poorer results are
caused by the lack of elements near the airfoil, so a non-uniform mesh might be helpful in order to reduce computation time
without compromising the results as much.

Figure 6: Subsonic Results (mesh 1: 40x20 | mesh 2: 160x80

3.4.3 Supersonic uniform mesh refinement

Figure 8 shows the comparison between the first and last meshes of the refinement. The meshes nº1 to nº3 had 20x20,
40x40 and 80x80 volumes (same cell dimensions of the subsonic case).

In the supersonic case, the difference in detail between grids is more pronounced. In the Mach field plot of mesh nº1, the
image is so blurry that the shocks are almost unintelligible. As in subsonic, the regions with larger gradients, for this case,
closer to the shocks, are not discretized enough to correctly capture the phenomenon.

In the finer mesh, it can be clearly identified the 4 expected regions around the diamond airfoil in supersonic flow: the
unperturbed flow before the shock, the first shock (around 1m) where the mach decreases considerably, the Prandtl-Meyer
expansion fan with the increase of mach and finally the second oblique shock that returns the Mach to 2.2. The theoretical
mach angle for It can even be seen that the angle of the 2st shock is smaller than the 1st one, as expected. Furthermore,
applying oblique shock theory, the shock angle expected for a Mach of 2.2 and a dihedral of 3.43º is 29.8º which correlates
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well with the visual results obtained where the angle seems to be between 27 and 31 degrees. Mach distribution in the airfoil
can be seen in Figure 9 when non-uniform grids are analysed. Opposite to the subsonic behaviour, the residuals present a
initial increase on its value and only then start converging. This behaviour can be clearly seen in figures 10 and 11.

Figure 7: Supersonic mesh refinement

3.4.4 Transonic uniform mesh refinement

As previously mentioned, the transonic case required the update of the alpha parameter from the velocity gradient, which
would change the coefficients related to the specific point. Due to this non linearty of the problem, the convergence presented
to be difficult and more dependent on good user inputs than the other regimes. The following figures show the results for two
transonic cases with meshes of 40x40 and 40x60 elements, for a domain of 10 meters in both directions. Furthermore a mesh
with 60x60 with the domain of 15 meters was also performed, it is shown in section 5.4. It has the same grid spacing as the
previous discretizations but with less perturbation from boundaries.

Figure 8: Transonic mesh refinement

As can be seen, it is possible to identify the shock on top of the airfoil after the flow turns supersonic.
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3.5 Non-uniform mesh analysis

As stated in the code description section, the program has the capability of generating a non-uniform mesh. Despite the
low robustness and high dependency in good user inputs (care as to be taken for the airfoil to be positioned with the same
number the cells for each side), the meshes created can provide higher resolution with minimal increase in computational cost.
As an example, three meshes are presented in figure 18 to 20 in the Appendix.

To better understand the inter dependencies of grid sizes, plots of Mach vs X coordinate in the centroid of the first cell, are
shown on the plot of Figure 9. The results were obtained, utilizing the grids presented above.

Figure 9: Comparison between Mach variation for different Mesh

The results shown are for an airfoil at Mach 2.2. Both shock waves can be identified by the sharp decrease in Mach number
at 1.5 and 2.5, while near the top of the airfoil, the expansion fan is visualized by the rapid increase in Mach number from
2.135 to approximately 2.27. Mesh size plays a key part in obtaining accurate results, with the mesh 50x50 lacking in quality
compared with the other meshes. To note that, despite the small increase in the number of volumes compared with the 50x50,
the non uniform mesh shows similar results when compared to the 80x80 (37% increase in number of cells). This is the clear
advantage of the non uniform meshes: the allocation of mesh volumes to the regions of most interest.

3.6 Test variable relaxation parameter for subsonic and supersonic

While running and reviewing the program, specially in transonic and subsonic cases, it was quickly understood that more
refined meshes lead to the most accurate results (see sections 3.5), this came, however, with a disproportional amount of CPU
cost. To mitigate this problem, a variable relaxation factor was implemented.

While studying the subsonic case, the group decided to run 4 different cases for the variation of relaxation factor, in order
to see its influence on convergence rate. The initial relaxation factor was ω = 1.4, and from that, 4 cases were simulated: no
relaxation factor increment, an increment of 0.4, increment 0.5 and finally an increment of 0.58. The target for the modification
was the residual value bellow 1x10−3. The initial ω was set at 1.4 because if higher, the simulations would diverge, and the
maximum increment was 0.58 because ω needed to be smaller than 2.

The residuals evolution of each of these 4 cases are plotted in figure 10. Until the increment is applied, the residuals
decrease as expected similarly between cases, however, when the increment is applied, a sudden jump (seen by the green line
close to 500 iterations) is followed by a sharp decrease of these residuals at a faster rate than the initial one, being the slope
proportional to the increment taken. This increment lead to a decrease in computation time from 1114s (13900 iterations) with
no increment, to converge within 45s (580 iterations) when 0.58 was applied, 24 to 25 times faster.
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Because of this successful experiment, a similar test was performed on mesh nº3 of the supersonic case. The results
are shown in Figure 11. For the stopping criteria chosen before, 1x10−5, there was really no problem in reaching it for the
supersonic case provided that ω wasn’t to high, which made the simulation diverge. So to test the effect of a variable relaxation
factor in this case, the tolerance for which the simulation was considered converged needed to be extremely low, 1x10−12.
Five cases were tested, two with no increment ( ω = 1 and ω = 1.1) and three with an initial ω = 1.1 and increment/decrement
of either +0.1, −0.1 and −0.3, when the errors reached 1x10−9.

Figure 10: Subsonic convergence, ωinitial = 1.4 Figure 11: Supersonic convergence

For the cases where ωinitial = 1.1, without increment, the residuals stagnate before the desired tolerance is reached. With a
0.1 increment, the residuals increase, which is obviously bad. A decrement makes the simulation converge, with the faster case
being the one were ω decreases to 1 (decrement of 0.1), effectively turning the SOR method into the Gauss-Seidel method.
The fixed ω = 1 converges faster than any of the other cases for the chosen tolerance, but if for example, the tolerance was
1000x higher, it would be slower. Despite of that, the effect of a variable relaxation factor is not as powerfull as in the subsonic
case, and, for supersonic, it is more beneficial to decrease ω than to increase it, if it is needed to reach very low tolerances.

4 Conclusion

Computational Fluid Dynamics can be defined as the application of numerical methods on the resolution of fluid flow and
heat transfer problems. In order to understand and apply this tool to its full potential, knowledge on what is behind the code is
important and many times disregarded. This way, this project aimed to analyse the behaviour of errors and quality of solution
when applying finite differences and finite volume method.

On the first part, the derivatives of two given functions were estimated utilizing a 4th order scheme and by another with
a 1st order scheme. After the Taylor series expansion it was possible to estimate the error and its variation with grid size and
verifying that effectively, the schemes used had the given order of approximation

On the second part of the project, a partial differential equation governing potential compressible flow was solved in a
domain with boundary conditions simulating the flow around a diamond airfoil with small opening angle. Three regimes
were simulated including transonic whose equation had a non-linear term which required special care in the discretization
procedure. Furthermore, variation in relaxation factor and variable grid sizes, including non-uniform mesh, were evaluated.
Supersonic presented the easiest convergence followed by subsonic and transonic. The application of non-uniform grids can
be advantageous but its geometric inputs need to be carefully chosen for the simulation to converge. Finally, variation of the
error and residuals showed that the application of a increment in the SOR process might be beneficial for faster convergence.
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5 Appendix

5.1 Errors and residuals evolutions over iterations for difference flow regimes

(a) Errors evolution (b) Residuals evolution

Figure 12: Errors and residuals evolution over iterations until convergence is reach for each solver for subsonic regime

(a) Errors evolution (b) Residuals evolution

Figure 13: Errors and residuals evolution over iterations until convergence is reach for each solver for transonic regime
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(a) Errors evolution (b) Residuals evolution

Figure 14: Errors and residuals evolution over iterations until convergence is reach for each solver for supersonic regime

5.2 Close up of subsonic mesh nº3

(a) Potential field of 160x80 mesh (b) Mach field of 160x80 mes

Figure 15: Subsonic
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5.3 Close up of supersonic mesh nº3

(a) Potential field of 80x80 mesh (b) Mach field of 80x80 mesh

Figure 16: Supersonic

5.4 Close up of transonic mesh: 60x60 domain: 15 x 15 meters

(a) Potential field (b) Mach field

Figure 17: Transonic
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5.5 Close-up of meshes in section 3.5

Figure 18: Uniform 50x50
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Figure 19: Uniform 80x80

Figure 20: Non-uniform mesh 54x50
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